维修保养分类:
维修保养分类: 全部
  • 默认
  • **
  • 销量
  • 价格
  • 28

    2020/10

    一、焦化行业 炼焦化学工业是煤炭化学工业的一个重要部分,煤炭主要加工方法包括高温炼焦( 950---1050摄氏度 )、中温 炼焦、低温炼焦等三种方法 。冶金行业一般采用高温炼焦来获得焦炭和回收化学产品。产品焦炭可作高炉冶炼的燃料,也可用于铸造、有色金属冶炼、制造水煤气;可用于制造生产合成氨的发生炉煤气,也可用来制造电石,以获得有机合成工业的原料。在炼焦过程中产生的化学产品经过回收、加工提取焦油、氨、萘、硫化氢 、粗苯等产品,并获得净焦炉煤气、煤焦油,粗苯精制加工和深度加工后,可以制取苯、甲苯、二甲苯、二硫化碳等,这些产品广泛用于化学工业、医药工业、耐火材料工业和国防工业。净焦炉煤气可供民用和作为工业燃料。煤气中的氨可用来制造硫酸铵、浓氨水、无水氨等。炼焦化学工业的产品已达数百种,中国炼焦化学工业已能从焦炉煤气、焦油和粗苯中制取一百多种化学产品 ,这对中国的国民经济发展具有十分重要的意义。1、焦化废水水质特点焦化废水是焦炉煤气初冷和焦化生产过程中产生的废水 ,其成分复杂,含有大量的酚类 、联苯、吡啶、吲哚和喹啉等有机污染物,还含有氰、无机氟离子和氨氮等有毒有害物质,污染物色度高,对环境危害大 。煤焦化废水主要成分有挥发酚、矿物油、氰化物、苯酚及苯系化合物、氨氮等,属于污染物浓度高,污染物成分复杂,难于治理的工业废水之一。其处理的关键之处在于:(1)酚含量高焦化废水中酚的平均含量为1500~2000mg/L,直接体现在污水的COD值上,不经脱酚的煤焦化废水,COD含量高达3000~5500mg/L。酚的可生化性差,在进生化处理系统之前,焦化废水应经蒸氨脱酚系统。经蒸氨脱酚后,废水中酚含量一般在450~850 mg/L 。这样的酚含量是完全可以经生物法降解的,且用于生物处理也是比较经济适用的 。(2)氨氮含量高蒸氨废水中氨含量高,平均含量为4500mg/L。这样高浓度的氨不能用生化法去除,而且其对生化处理单元有严重的毒害作用,可以杀死活性污泥,破坏整个生物处理系统。因此,该高含氨氮废水在进入污水处理站之前,要设脱氨预处理过程。经过脱氨预处理的废水氨氮浓度在80~200mg/L左右,平均浓度一般小于200mg/L,经本工艺处理后,完全能达到处理到小于10mg/L以下的标准。氨氮的去除是该类污水处理工艺选择时首先要考虑的问题。(3)难降解有机物含量高煤焦化废水中含有大量苯系 、萘系及杂环类难降解有机物 ,通常的好氧活性污泥法难以直接处理达标。因此,在好氧法前,需改善其可生化性,提高BOD:COD值。2、焦化废水生化处理工艺A2/O工艺A2/O工艺是在传统的A/O工艺前加一厌氧段 ,目的是进一步提高有机物的去除率、提高废水的可生化性。厌氧段污水首先流入厌氧池,在兼性厌氧菌和专性厌氧菌的作用下,废水中的有机物被分解成沼气和被吸收转变成微生物的躯体,以污泥的形式得以去除。另外,NH3-N因细胞的合成而被去除一部分,使污水中的NH3-N浓度下降,但NO3-N含量没有变化。而且,厌氧过程还能大大地改善废水中难以直接用好氧生化法降解的苯、蒽醌类有机物的可生化性,提高后续生物氧化法的处理效率,减少后续生化过程的能耗。该厌氧段的主要目的是改善废水的可生化性及去除部分有机物。缺氧段经过厌氧反应的废水进入缺氧池中,同时还有一部分通过好氧处理的硝化液(上清液)回流到缺氧池,在缺氧池内进行反硝化。反硝化菌夺取回流硝化液中亚硝酸根和硝酸根中的氧氧化有机物的同时,将亚硝态氮和硝态氮还原为氮气而除去。反硝化过程是在缺氧条件下,异养型反硝化细菌将废水中NO3-N还原为N2之过程 ,其生物化学反应式为:6NO3-+2CH3OH → 6NO2-+2CO2+4H2O6NO2-+3CH3OH → 3N2↑+3CO2+3H2O+60H-N2难溶于水 ,经鼓气 ,得以吹脱。好氧段在好氧池中,有机物被微生物生化降解,去除率较高 。同时,废水中的氨氮被硝化菌氧化为亚硝酸盐和硝酸盐 。通过硝化的混合液经沉淀池进行固液分离,分离的大部分硝化液回流至缺氧池进行反硝化脱氮,另有单倍处理水量经进一步处理后排放,污泥全部回流到好氧池。废水中的NH3,在好氧条件下,自养型亚硝化菌与硝化菌将NH3氧化为NO3-N的过程,是生物脱氮的第一步,其生物化学反应式为:            亚硝化单胞菌2NH4+ + 3O -------------2NO2- + 4H2O + 4H+             硝化杆菌2NO2+ + O2 -------------NO3-AO工艺AO工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在缺氧段,异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。3、生化处理的优势(1)效率高。该工艺对废水中的有机物,氨氮等均有较高的去除效果。当总停留时间大于54h,经生物脱氮后的出水再经过混凝沉淀,可将COD值降至100mg/L以下,其他指标也达到排放标准,总氮去除率在70%以上。(2)流程简单,投资省 ,操作费用低。该工艺是以废水中的有机物作为反硝化的碳源,故不需要再另加甲醇等昂贵的碳源。尤其,在蒸氨塔设置有脱固定氨的装置后,碳氮比有所提高,在反硝化过程中产生的碱度相应地降低了硝化过程需要的碱耗。(3)缺氧反硝化过程对污染物具有较高的降解效率。如COD、BOD5和SCN-在缺氧段中去除率在67%、38%、59%,酚和有机物的去除率分别为62%和36%,故反硝化反应是最为经济的节能型降解过程。(4)容积负荷高。由于硝化阶段采用了强化生化,反硝化阶段又采用了高浓度污泥的膜技术,有效地提高了硝化及反硝化的污泥浓度,与国外同类工艺相比,具有较高的容积负荷。(5)缺氧/好氧工艺的耐负荷冲击能力强 。当进水水质波动较大或污染物浓度较高时,本工艺均能维持正常运行,故操作管理也很简单。通过以**程的比较,不难看出,生物脱氮工艺本身就是脱氮的同时,也降解酚、氰、COD等有机物。结合水量、水质特点,我们推荐采用缺氧/好氧(A/O)的生物脱氮(内循环) 工艺流程,使污水处理装置不但能达到脱氮的要求,而且其它指标也达到排放标准。4、典型应用案例案例一邹平福明焦化有限公司,60T/h废水处理工程业废水处理解决方案工业废水解决方案应用场景一、焦化行业 炼焦化学工业是煤炭化学工业的一个重要部分,煤炭主要加工方法包括高温炼焦( 950---1050摄氏度 )、中温 炼焦、低温炼焦等三种方法 。冶金行业一般采用高温炼焦来获得焦炭和回收化学产品。产品焦炭可作高炉冶炼的燃料,也可用于铸造、有色金属冶炼、制造水煤气;可用于制造生产合成氨的发生炉煤气,也可用来制造电石,以获得有机合成工业的原料。在炼焦过程中产生的化学产品经过回收、加工提取焦油、氨、萘、硫化氢 、粗苯等产品,并获得净焦炉煤气、煤焦油,粗苯精制加工和深度加工后,可以制取苯、甲苯、二甲苯、二硫化碳等,这些产品广泛用于化学工业、医药工业、耐火材料工业和国防工业。净焦炉煤气可供民用和作为工业燃料。煤气中的氨可用来制造硫酸铵、浓氨水、无水氨等。炼焦化学工业的产品已达数百种,中国炼焦化学工业已能从焦炉煤气、焦油和粗苯中制取一百多种化学产品 ,这对中国的国民经济发展具有十分重要的意义。1、焦化废水水质特点焦化废水是焦炉煤气初冷和焦化生产过程中产生的废水 ,其成分复杂,含有大量的酚类 、联苯、吡啶、吲哚和喹啉等有机污染物,还含有氰、无机氟离子和氨氮等有毒有害物质,污染物色度高,对环境危害大 。煤焦化废水主要成分有挥发酚、矿物油、氰化物、苯酚及苯系化合物、氨氮等,属于污染物浓度高,污染物成分复杂,难于治理的工业废水之一。其处理的关键之处在于:(1)酚含量高焦化废水中酚的平均含量为1500~2000mg/L,直接体现在污水的COD值上,不经脱酚的煤焦化废水,COD含量高达3000~5500mg/L。酚的可生化性差,在进生化处理系统之前,焦化废水应经蒸氨脱酚系统。经蒸氨脱酚后,废水中酚含量一般在450~850 mg/L 。这样的酚含量是完全可以经生物法降解的,且用于生物处理也是比较经济适用的 。(2)氨氮含量高蒸氨废水中氨含量高,平均含量为4500mg/L。这样高浓度的氨不能用生化法去除,而且其对生化处理单元有严重的毒害作用,可以杀死活性污泥,破坏整个生物处理系统。因此,该高含氨氮废水在进入污水处理站之前,要设脱氨预处理过程。经过脱氨预处理的废水氨氮浓度在80~200mg/L左右,平均浓度一般小于200mg/L,经本工艺处理后,完全能达到处理到小于10mg/L以下的标准。氨氮的去除是该类污水处理工艺选择时首先要考虑的问题。(3)难降解有机物含量高煤焦化废水中含有大量苯系 、萘系及杂环类难降解有机物 ,通常的好氧活性污泥法难以直接处理达标。因此,在好氧法前,需改善其可生化性,提高BOD:COD值。2、焦化废水生化处理工艺A2/O工艺A2/O工艺是在传统的A/O工艺前加一厌氧段 ,目的是进一步提高有机物的去除率、提高废水的可生化性。厌氧段污水首先流入厌氧池,在兼性厌氧菌和专性厌氧菌的作用下,废水中的有机物被分解成沼气和被吸收转变成微生物的躯体,以污泥的形式得以去除。另外,NH3-N因细胞的合成而被去除一部分,使污水中的NH3-N浓度下降,但NO3-N含量没有变化。而且,厌氧过程还能大大地改善废水中难以直接用好氧生化法降解的苯、蒽醌类有机物的可生化性,提高后续生物氧化法的处理效率,减少后续生化过程的能耗。该厌氧段的主要目的是改善废水的可生化性及去除部分有机物。缺氧段经过厌氧反应的废水进入缺氧池中,同时还有一部分通过好氧处理的硝化液(上清液)回流到缺氧池,在缺氧池内进行反硝化。反硝化菌夺取回流硝化液中亚硝酸根和硝酸根中的氧氧化有机物的同时,将亚硝态氮和硝态氮还原为氮气而除去。反硝化过程是在缺氧条件下,异养型反硝化细菌将废水中NO3-N还原为N2之过程 ,其生物化学反应式为:6NO3-+2CH3OH → 6NO2-+2CO2+4H2O6NO2-+3CH3OH → 3N2↑+3CO2+3H2O+60H-N2难溶于水 ,经鼓气 ,得以吹脱。好氧段在好氧池中,有机物被微生物生化降解,去除率较高 。同时,废水中的氨氮被硝化菌氧化为亚硝酸盐和硝酸盐 。通过硝化的混合液经沉淀池进行固液分离,分离的大部分硝化液回流至缺氧池进行反硝化脱氮,另有单倍处理水量经进一步处理后排放,污泥全部回流到好氧池。废水中的NH3,在好氧条件下,自养型亚硝化菌与硝化菌将NH3氧化为NO3-N的过程,是生物脱氮的第一步,其生物化学反应式为:            亚硝化单胞菌2NH4+ + 3O -------------2NO2- + 4H2O + 4H+             硝化杆菌2NO2+ + O2 -------------NO3-AO工艺AO工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在缺氧段,异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。3、生化处理的优势(1)效率高。该工艺对废水中的有机物,氨氮等均有较高的去除效果。当总停留时间大于54h,经生物脱氮后的出水再经过混凝沉淀,可将COD值降至100mg/L以下,其他指标也达到排放标准,总氮去除率在70%以上。(2)流程简单,投资省 ,操作费用低。该工艺是以废水中的有机物作为反硝化的碳源,故不需要再另加甲醇等昂贵的碳源。尤其,在蒸氨塔设置有脱固定氨的装置后,碳氮比有所提高,在反硝化过程中产生的碱度相应地降低了硝化过程需要的碱耗。(3)缺氧反硝化过程对污染物具有较高的降解效率。如COD、BOD5和SCN-在缺氧段中去除率在67%、38%、59%,酚和有机物的去除率分别为62%和36%,故反硝化反应是最为经济的节能型降解过程。(4)容积负荷高。由于硝化阶段采用了强化生化,反硝化阶段又采用了高浓度污泥的膜技术,有效地提高了硝化及反硝化的污泥浓度,与国外同类工艺相比,具有较高的容积负荷。(5)缺氧/好氧工艺的耐负荷冲击能力强 。当进水水质波动较大或污染物浓度较高时,本工艺均能维持正常运行,故操作管理也很简单。通过以**程的比较,不难看出,生物脱氮工艺本身就是脱氮的同时,也降解酚、氰、COD等有机物。结合水量、水质特点,我们推荐采用缺氧/好氧(A/O)的生物脱氮(内循环) 工艺流程,使污水处理装置不但能达到脱氮的要求,而且其它指标也达到排放标准。4、典型应用案例案例一邹平福明焦化有限公司,60T/h废水处理工程业废水处理解决方案工业废水解决方案应用场景一、焦化行业 炼焦化学工业是煤炭化学工业的一个重要部分,煤炭主要加工方法包括高温炼焦( 950---1050摄氏度 )、中温 炼焦、低温炼焦等三种方法 。冶金行业一般采用高温炼焦来获得焦炭和回收化学产品。产品焦炭可作高炉冶炼的燃料,也可用于铸造、有色金属冶炼、制造水煤气;可用于制造生产合成氨的发生炉煤气,也可用来制造电石,以获得有机合成工业的原料。在炼焦过程中产生的化学产品经过回收、加工提取焦油、氨、萘、硫化氢 、粗苯等产品,并获得净焦炉煤气、煤焦油,粗苯精制加工和深度加工后,可以制取苯、甲苯、二甲苯、二硫化碳等,这些产品广泛用于化学工业、医药工业、耐火材料工业和国防工业。净焦炉煤气可供民用和作为工业燃料。煤气中的氨可用来制造硫酸铵、浓氨水、无水氨等。炼焦化学工业的产品已达数百种,中国炼焦化学工业已能从焦炉煤气、焦油和粗苯中制取一百多种化学产品 ,这对中国的国民经济发展具有十分重要的意义。1、焦化废水水质特点焦化废水是焦炉煤气初冷和焦化生产过程中产生的废水 ,其成分复杂,含有大量的酚类 、联苯、吡啶、吲哚和喹啉等有机污染物,还含有氰、无机氟离子和氨氮等有毒有害物质,污染物色度高,对环境危害大 。煤焦化废水主要成分有挥发酚、矿物油、氰化物、苯酚及苯系化合物、氨氮等,属于污染物浓度高,污染物成分复杂,难于治理的工业废水之一。其处理的关键之处在于:(1)酚含量高焦化废水中酚的平均含量为1500~2000mg/L,直接体现在污水的COD值上,不经脱酚的煤焦化废水,COD含量高达3000~5500mg/L。酚的可生化性差,在进生化处理系统之前,焦化废水应经蒸氨脱酚系统。经蒸氨脱酚后,废水中酚含量一般在450~850 mg/L 。这样的酚含量是完全可以经生物法降解的,且用于生物处理也是比较经济适用的 。(2)氨氮含量高蒸氨废水中氨含量高,平均含量为4500mg/L。这样高浓度的氨不能用生化法去除,而且其对生化处理单元有严重的毒害作用,可以杀死活性污泥,破坏整个生物处理系统。因此,该高含氨氮废水在进入污水处理站之前,要设脱氨预处理过程。经过脱氨预处理的废水氨氮浓度在80~200mg/L左右,平均浓度一般小于200mg/L,经本工艺处理后,完全能达到处理到小于10mg/L以下的标准。氨氮的去除是该类污水处理工艺选择时首先要考虑的问题。(3)难降解有机物含量高煤焦化废水中含有大量苯系 、萘系及杂环类难降解有机物 ,通常的好氧活性污泥法难以直接处理达标。因此,在好氧法前,需改善其可生化性,提高BOD:COD值。2、焦化废水生化处理工艺A2/O工艺A2/O工艺是在传统的A/O工艺前加一厌氧段 ,目的是进一步提高有机物的去除率、提高废水的可生化性。厌氧段污水首先流入厌氧池,在兼性厌氧菌和专性厌氧菌的作用下,废水中的有机物被分解成沼气和被吸收转变成微生物的躯体,以污泥的形式得以去除。另外,NH3-N因细胞的合成而被去除一部分,使污水中的NH3-N浓度下降,但NO3-N含量没有变化。而且,厌氧过程还能大大地改善废水中难以直接用好氧生化法降解的苯、蒽醌类有机物的可生化性,提高后续生物氧化法的处理效率,减少后续生化过程的能耗。该厌氧段的主要目的是改善废水的可生化性及去除部分有机物。缺氧段经过厌氧反应的废水进入缺氧池中,同时还有一部分通过好氧处理的硝化液(上清液)回流到缺氧池,在缺氧池内进行反硝化。反硝化菌夺取回流硝化液中亚硝酸根和硝酸根中的氧氧化有机物的同时,将亚硝态氮和硝态氮还原为氮气而除去。反硝化过程是在缺氧条件下,异养型反硝化细菌将废水中NO3-N还原为N2之过程 ,其生物化学反应式为:6NO3-+2CH3OH → 6NO2-+2CO2+4H2O6NO2-+3CH3OH → 3N2↑+3CO2+3H2O+60H-N2难溶于水 ,经鼓气 ,得以吹脱。好氧段在好氧池中,有机物被微生物生化降解,去除率较高 。同时,废水中的氨氮被硝化菌氧化为亚硝酸盐和硝酸盐 。通过硝化的混合液经沉淀池进行固液分离,分离的大部分硝化液回流至缺氧池进行反硝化脱氮,另有单倍处理水量经进一步处理后排放,污泥全部回流到好氧池。废水中的NH3,在好氧条件下,自养型亚硝化菌与硝化菌将NH3氧化为NO3-N的过程,是生物脱氮的第一步,其生物化学反应式为:            亚硝化单胞菌2NH4+ + 3O -------------2NO2- + 4H2O + 4H+             硝化杆菌2NO2+ + O2 -------------NO3-AO工艺AO工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在缺氧段,异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。3、生化处理的优势(1)效率高。该工艺对废水中的有机物,氨氮等均有较高的去除效果。当总停留时间大于54h,经生物脱氮后的出水再经过混凝沉淀,可将COD值降至100mg/L以下,其他指标也达到排放标准,总氮去除率在70%以上。(2)流程简单,投资省 ,操作费用低。该工艺是以废水中的有机物作为反硝化的碳源,故不需要再另加甲醇等昂贵的碳源。尤其,在蒸氨塔设置有脱固定氨的装置后,碳氮比有所提高,在反硝化过程中产生的碱度相应地降低了硝化过程需要的碱耗。(3)缺氧反硝化过程对污染物具有较高的降解效率。如COD、BOD5和SCN-在缺氧段中去除率在67%、38%、59%,酚和有机物的去除率分别为62%和36%,故反硝化反应是最为经济的节能型降解过程。(4)容积负荷高。由于硝化阶段采用了强化生化,反硝化阶段又采用了高浓度污泥的膜技术,有效地提高了硝化及反硝化的污泥浓度,与国外同类工艺相比,具有较高的容积负荷。(5)缺氧/好氧工艺的耐负荷冲击能力强 。当进水水质波动较大或污染物浓度较高时,本工艺均能维持正常运行,故操作管理也很简单。通过以**程的比较,不难看出,生物脱氮工艺本身就是脱氮的同时,也降解酚、氰、COD等有机物。结合水量、水质特点,我们推荐采用缺氧/好氧(A/O)的生物脱氮(内循环) 工艺流程,使污水处理装置不但能达到脱氮的要求,而且其它指标也达到排放标准。4、典型应用案例案例一邹平福明焦化有限公司,60T/h废水处理工程业废水处理解决方案工业废水解决方案应用场景一、焦化行业 炼焦化学工业是煤炭化学工业的一个重要部分,煤炭主要加工方法包括高温炼焦( 950---1050摄氏度 )、中温 炼焦、低温炼焦等三种方法 。冶金行业一般采用高温炼焦来获得焦炭和回收化学产品。产品焦炭可作高炉冶炼的燃料,也可用于铸造、有色金属冶炼、制造水煤气;可用于制造生产合成氨的发生炉煤气,也可用来制造电石,以获得有机合成工业的原料。在炼焦过程中产生的化学产品经过回收、加工提取焦油、氨、萘、硫化氢 、粗苯等产品,并获得净焦炉煤气、煤焦油,粗苯精制加工和深度加工后,可以制取苯、甲苯、二甲苯、二硫化碳等,这些产品广泛用于化学工业、医药工业、耐火材料工业和国防工业。净焦炉煤气可供民用和作为工业燃料。煤气中的氨可用来制造硫酸铵、浓氨水、无水氨等。炼焦化学工业的产品已达数百种,中国炼焦化学工业已能从焦炉煤气、焦油和粗苯中制取一百多种化学产品 ,这对中国的国民经济发展具有十分重要的意义。1、焦化废水水质特点焦化废水是焦炉煤气初冷和焦化生产过程中产生的废水 ,其成分复杂,含有大量的酚类 、联苯、吡啶、吲哚和喹啉等有机污染物,还含有氰、无机氟离子和氨氮等有毒有害物质,污染物色度高,对环境危害大 。煤焦化废水主要成分有挥发酚、矿物油、氰化物、苯酚及苯系化合物、氨氮等,属于污染物浓度高,污染物成分复杂,难于治理的工业废水之一。其处理的关键之处在于:(1)酚含量高焦化废水中酚的平均含量为1500~2000mg/L,直接体现在污水的COD值上,不经脱酚的煤焦化废水,COD含量高达3000~5500mg/L。酚的可生化性差,在进生化处理系统之前,焦化废水应经蒸氨脱酚系统。经蒸氨脱酚后,废水中酚含量一般在450~850 mg/L 。这样的酚含量是完全可以经生物法降解的,且用于生物处理也是比较经济适用的 。(3)难降解有机物含量高煤焦化废水中含有大量苯系 、萘系及杂环类难降解有机物 ,通常的好氧活性污泥法难以直接处理达标。因此,在好氧法前,需改善其可生化性,提高BOD:COD值。2、焦化废水生化处理工艺A2/O工艺A2/O工艺是在传统的A/O工艺前加一厌氧段 ,目的是进一步提高有机物的去除率、提高废水的可生化性。厌氧段污水首先流入厌氧池,在兼性厌氧菌和专性厌氧菌的作用下,废水中的有机物被分解成沼气和被吸收转变成微生物的躯体,以污泥的形式得以去除。另外,NH3-N因细胞的合成而被去除一部分,使污水中的NH3-N浓度下降,但NO3-N含量没有变化。而且,厌氧过程还能大大地改善废水中难以直接用好氧生化法降解的苯、蒽醌类有机物的可生化性,提高后续生物氧化法的处理效率,减少后续生化过程的能耗。该厌氧段的主要目的是改善废水的可生化性及去除部分有机物。缺氧段经过厌氧反应的废水进入缺氧池中,同时还有一部分通过好氧处理的硝化液(上清液)回流到缺氧池,在缺氧池内进行反硝化。反硝化菌夺取回流硝化液中亚硝酸根和硝酸根中的氧氧化有机物的同时,将亚硝态氮和硝态氮还原为氮气而除去。反硝化过程是在缺氧条件下,异养型反硝化细菌将废水中NO3-N还原为N2之过程 ,其生物化学反应式为:6NO3-+2CH3OH → 6NO2-+2CO2+4H2O6NO2-+3CH3OH → 3N2↑+3CO2+3H2O+60H-N2难溶于水 ,经鼓气 ,得以吹脱。好氧段在好氧池中,有机物被微生物生化降解,去除率较高 。同时,废水中的氨氮被硝化菌氧化为亚硝酸盐和硝酸盐 。通过硝化的混合液经沉淀池进行固液分离,分离的大部分硝化液回流至缺氧池进行反硝化脱氮,另有单倍处理水量经进一步处理后排放,污泥全部回流到好氧池。废水中的NH3,在好氧条件下,自养型亚硝化菌与硝化菌将NH3氧化为NO3-N的过程,是生物脱氮的第一步,其生物化学反应式为:            亚硝化单胞菌2NH4+ + 3O -------------2NO2- + 4H2O + 4H+             硝化杆菌2NO2+ + O2 -------------NO3-AO工艺AO工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在缺氧段,异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。3、生化处理的优势(1)效率高。该工艺对废水中的有机物,氨氮等均有较高的去除效果。当总停留时间大于54h,经生物脱氮后的出水再经过混凝沉淀,可将COD值降至100mg/L以下,其他指标也达到排放标准,总氮去除率在70%以上。(2)流程简单,投资省 ,操作费用低。该工艺是以废水中的有机物作为反硝化的碳源,故不需要再另加甲醇等昂贵的碳源。尤其,在蒸氨塔设置有脱固定氨的装置后,碳氮比有所提高,在反硝化过程中产生的碱度相应地降低了硝化过程需要的碱耗。(3)缺氧反硝化过程对污染物具有较高的降解效率。如COD、BOD5和SCN-在缺氧段中去除率在67%、38%、59%,酚和有机物的去除率分别为62%和36%,故反硝化反应是最为经济的节能型降解过程。(4)容积负荷高。由于硝化阶段采用了强化生化,反硝化阶段又采用了高浓度污泥的膜技术,有效地提高了硝化及反硝化的污泥浓度,与国外同类工艺相比,具有较高的容积负荷。(5)缺氧/好氧工艺的耐负荷冲击能力强 。当进水水质波动较大或污染物浓度较高时,本工艺均能维持正常运行,故操作管理也很简单。通过以**程的比较,不难看出,生物脱氮工艺本身就是脱氮的同时,也降解酚、氰、COD等有机物。结合水量、水质特点,我们推荐采用缺氧/好氧(A/O)的生物脱氮(内循环) 工艺流程,使污水处理装置不但能达到脱氮的要求,而且其它指标也达到排放标准。4、典型应用案例案例一邹平福明焦化有限公司,60T/h废水处理工程业废水处理解决方案工业废水解决方案应用场景一、焦化行业 炼焦化学工业是煤炭化学工业的一个重要部分,煤炭主要加工方法包括高温炼焦( 950---1050摄氏度 )、中温 炼焦、低温炼焦等三种方法 。冶金行业一般采用高温炼焦来获得焦炭和回收化学产品。产品焦炭可作高炉冶炼的燃料,也可用于铸造、有色金属冶炼、制造水煤气;可用于制造生产合成氨的发生炉煤气,也可用来制造电石,以获得有机合成工业的原料。在炼焦过程中产生的化学产品经过回收、加工提取焦油、氨、萘、硫化氢 、粗苯等产品,并获得净焦炉煤气、煤焦油,粗苯精制加工和深度加工后,可以制取苯、甲苯、二甲苯、二硫化碳等,这些产品广泛用于化学工业、医药工业、耐火材料工业和国防工业。净焦炉煤气可供民用和作为工业燃料。煤气中的氨可用来制造硫酸铵、浓氨水、无水氨等。炼焦化学工业的产品已达数百种,中国炼焦化学工业已能从焦炉煤气、焦油和粗苯中制取一百多种化学产品 ,这对中国的国民经济发展具有十分重要的意义。1、焦化废水水质特点焦化废水是焦炉煤气初冷和焦化生产过程中产生的废水 ,其成分复杂,含有大量的酚类 、联苯、吡啶、吲哚和喹啉等有机污染物,还含有氰、无机氟离子和氨氮等有毒有害物质,污染物色度高,对环境危害大 。煤焦化废水主要成分有挥发酚、矿物油、氰化物、苯酚及苯系化合物、氨氮等,属于污染物浓度高,污染物成分复杂,难于治理的工业废水之一。其处理的关键之处在于:(1)酚含量高焦化废水中酚的平均含量为1500~2000mg/L,直接体现在污水的COD值上,不经脱酚的煤焦化废水,COD含量高达3000~5500mg/L。酚的可生化性差,在进生化处理系统之前,焦化废水应经蒸氨脱酚系统。经蒸氨脱酚后,废水中酚含量一般在450~850 mg/L 。这样的酚含量是完全可以经生物法降解的,且用于生物处理也是比较经济适用的 。(2)氨氮含量高蒸氨废水中氨含量高,平均含量为4500mg/L。这样高浓度的氨不能用生化法去除,而且其对生化处理单元有严重的毒害作用,可以杀死活性污泥,破坏整个生物处理系统。因此,该高含氨氮废水在进入污水处理站之前,要设脱氨预处理过程。经过脱氨预处理的废水氨氮浓度在80~200mg/L左右,平均浓度一般小于200mg/L,经本工艺处理后,完全能达到处理到小于10mg/L以下的标准。氨氮的去除是该类污水处理工艺选择时首先要考虑的问题。(3)难降解有机物含量高煤焦化废水中含有大量苯系 、萘系及杂环类难降解有机物 ,通常的好氧活性污泥法难以直接处理达标。因此,在好氧法前,需改善其可生化性,提高BOD:COD值。2、焦化废水生化处理工艺A2/O工艺A2/O工艺是在传统的A/O工艺前加一厌氧段 ,目的是进一步提高有机物的去除率、提高废水的可生化性。厌氧段污水首先流入厌氧池,在兼性厌氧菌和专性厌氧菌的作用下,废水中的有机物被分解成沼气和被吸收转变成微生物的躯体,以污泥的形式得以去除。另外,NH3-N因细胞的合成而被去除一部分,使污水中的NH3-N浓度下降,但NO3-N含量没有变化。而且,厌氧过程还能大大地改善废水中难以直接用好氧生化法降解的苯、蒽醌类有机物的可生化性,提高后续生物氧化法的处理效率,减少后续生化过程的能耗。该厌氧段的主要目的是改善废水的可生化性及去除部分有机物。缺氧段经过厌氧反应的废水进入缺氧池中,同时还有一部分通过好氧处理的硝化液(上清液)回流到缺氧池,在缺氧池内进行反硝化。反硝化菌夺取回流硝化液中亚硝酸根和硝酸根中的氧氧化有机物的同时,将亚硝态氮和硝态氮还原为氮气而除去。反硝化过程是在缺氧条件下,异养型反硝化细菌将废水中NO3-N还原为N2之过程 ,其生物化学反应式为:6NO3-+2CH3OH → 6NO2-+2CO2+4H2O6NO2-+3CH3OH → 3N2↑+3CO2+3H2O+60H-N2难溶于水 ,经鼓气 ,得以吹脱。好氧段在好氧池中,有机物被微生物生化降解,去除率较高 。同时,废水中的氨氮被硝化菌氧化为亚硝酸盐和硝酸盐 。通过硝化的混合液经沉淀池进行固液分离,分离的大部分硝化液回流至缺氧池进行反硝化脱氮,另有单倍处理水量经进一步处理后排放,污泥全部回流到好氧池。废水中的NH3,在好氧条件下,自养型亚硝化菌与硝化菌将NH3氧化为NO3-N的过程,是生物脱氮的第一步,其生物化学反应式为:            亚硝化单胞菌2NH4+ + 3O -------------2NO2- + 4H2O + 4H+             硝化杆菌2NO2+ + O2 -------------NO3-AO工艺AO工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在缺氧段,异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。3、生化处理的优势(1)效率高。该工艺对废水中的有机物,氨氮等均有较高的去除效果。当总停留时间大于54h,经生物脱氮后的出水再经过混凝沉淀,可将COD值降至100mg/L以下,其他指标也达到排放标准,总氮去除率在70%以上。(2)流程简单,投资省 ,操作费用低。该工艺是以废水中的有机物作为反硝化的碳源,故不需要再另加甲醇等昂贵的碳源。尤其,在蒸氨塔设置有脱固定氨的装置后,碳氮比有所提高,在反硝化过程中产生的碱度相应地降低了硝化过程需要的碱耗。(3)缺氧反硝化过程对污染物具有较高的降解效率。如COD、BOD5和SCN-在缺氧段中去除率在67%、38%、59%,酚和有机物的去除率分别为62%和36%,故反硝化反应是最为经济的节能型降解过程。(4)容积负荷高。由于硝化阶段采用了强化生化,反硝化阶段又采用了高浓度污泥的膜技术,有效地提高了硝化及反硝化的污泥浓度,与国外同类工艺相比,具有较高的容积负荷。(5)缺氧/好氧工艺的耐负荷冲击能力强 。当进水水质波动较大或污染物浓度较高时,本工艺均能维持正常运行,故操作管理也很简单。通过以**程的比较,不难看出,生物脱氮工艺本身就是脱氮的同时,也降解酚、氰、COD等有机物。结合水量、水质特点,我们推荐采用缺氧/好氧(A/O)的生物脱氮(内循环) 工艺流程,使污水处理装置不但能达到脱氮的要求,而且其它指标也达到排放标准。4、典型应用案例案例一邹平福明焦化有限公司,60T/h废水处理工程业废水处理解决方案工业废水解决方案应用场景一、焦化行业 炼焦化学工业是煤炭化学工业的一个重要部分,煤炭主要加工方法包括高温炼焦( 950---1050摄氏度 )、中温 炼焦、低温炼焦等三种方法 。冶金行业一般采用高温炼焦来获得焦炭和回收化学产品。产品焦炭可作高炉冶炼的燃料,也可用于铸造、有色金属冶炼、制造水煤气;可用于制造生产合成氨的发生炉煤气,也可用来制造电石,以获得有机合成工业的原料。在炼焦过程中产生的化学产品经过回收、加工提取焦油、氨、萘、硫化氢 、粗苯等产品,并获得净焦炉煤气、煤焦油,粗苯精制加工和深度加工后,可以制取苯、甲苯、二甲苯、二硫化碳等,这些产品广泛用于化学工业、医药工业、耐火材料工业和国防工业。净焦炉煤气可供民用和作为工业燃料。煤气中的氨可用来制造硫酸铵、浓氨水、无水氨等。炼焦化学工业的产品已达数百种,中国炼焦化学工业已能从焦炉煤气、焦油和粗苯中制取一百多种化学产品 ,这对中国的国民经济发展具有十分重要的意义。1、焦化废水水质特点焦化废水是焦炉煤气初冷和焦化生产过程中产生的废水 ,其成分复杂,含有大量的酚类 、联苯、吡啶、吲哚和喹啉等有机污染物,还含有氰、无机氟离子和氨氮等有毒有害物质,污染物色度高,对环境危害大 。煤焦化废水主要成分有挥发酚、矿物油、氰化物、苯酚及苯系化合物、氨氮等,属于污染物浓度高,污染物成分复杂,难于治理的工业废水之一。其处理的关键之处在于:(1)酚含量高焦化废水中酚的平均含量为1500~2000mg/L,直接体现在污水的COD值上,不经脱酚的煤焦化废水,COD含量高达3000~5500mg/L。酚的可生化性差,在进生化处理系统之前,焦化废水应经蒸氨脱酚系统。经蒸氨脱酚后,废水中酚含量一般在450~850 mg/L 。这样的酚含量是完全可以经生物法降解的,且用于生物处理也是比较经济适用的 。(2)氨氮含量高蒸氨废水中氨含量高,平均含量为4500mg/L。这样高浓度的氨不能用生化法去除,而且其对生化处理单元有严重的毒害作用,可以杀死活性污泥,破坏整个生物处理系统。因此,该高含氨氮废水在进入污水处理站之前,要设脱氨预处理过程。经过脱氨预处理的废水氨氮浓度在80~200mg/L左右,平均浓度一般小于200mg/L,经本工艺处理后,完全能达到处理到小于10mg/L以下的标准。氨氮的去除是该类污水处理工艺选择时首先要考虑的问题。(3)难降解有机物含量高煤焦化废水中含有大量苯系 、萘系及杂环类难降解有机物 ,通常的好氧活性污泥法难以直接处理达标。因此,在好氧法前,需改善其可生化性,提高BOD:COD值。2、焦化废水生化处理工艺A2/O工艺A2/O工艺是在传统的A/O工艺前加一厌氧段 ,目的是进一步提高有机物的去除率、提高废水的可生化性。厌氧段污水首先流入厌氧池,在兼性厌氧菌和专性厌氧菌的作用下,废水中的有机物被分解成沼气和被吸收转变成微生物的躯体,以污泥的形式得以去除。另外,NH3-N因细胞的合成而被去除一部分,使污水中的NH3-N浓度下降,但NO3-N含量没有变化。而且,厌氧过程还能大大地改善废水中难以直接用好氧生化法降解的苯、蒽醌类有机物的可生化性,提高后续生物氧化法的处理效率,减少后续生化过程的能耗。该厌氧段的主要目的是改善废水的可生化性及去除部分有机物。缺氧段经过厌氧反应的废水进入缺氧池中,同时还有一部分通过好氧处理的硝化液(上清液)回流到缺氧池,在缺氧池内进行反硝化。反硝化菌夺取回流硝化液中亚硝酸根和硝酸根中的氧氧化有机物的同时,将亚硝态氮和硝态氮还原为氮气而除去。反硝化过程是在缺氧条件下,异养型反硝化细菌将废水中NO3-N还原为N2之过程 ,其生物化学反应式为:6NO3-+2CH3OH → 6NO2-+2CO2+4H2O6NO2-+3CH3OH → 3N2↑+3CO2+3H2O+60H-N2难溶于水 ,经鼓气 ,得以吹脱。好氧段在好氧池中,有机物被微生物生化降解,去除率较高 。同时,废水中的氨氮被硝化菌氧化为亚硝酸盐和硝酸盐 。通过硝化的混合液经沉淀池进行固液分离,分离的大部分硝化液回流至缺氧池进行反硝化脱氮,另有单倍处理水量经进一步处理后排放,污泥全部回流到好氧池。废水中的NH3,在好氧条件下,自养型亚硝化菌与硝化菌将NH3氧化为NO3-N的过程,是生物脱氮的第一步,其生物化学反应式为:            亚硝化单胞菌2NH4+ + 3O -------------2NO2- + 4H2O + 4H+             硝化杆菌2NO2+ + O2 -------------NO3-AO工艺AO工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在缺氧段,异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。3、生化处理的优势(1)效率高。该工艺对废水中的有机物,氨氮等均有较高的去除效果。当总停留时间大于54h,经生物脱氮后的出水再经过混凝沉淀,可将COD值降至100mg/L以下,其他指标也达到排放标准,总氮去除率在70%以上。(2)流程简单,投资省 ,操作费用低。该工艺是以废水中的有机物作为反硝化的碳源,故不需要再另加甲醇等昂贵的碳源。尤其,在蒸氨塔设置有脱固定氨的装置后,碳氮比有所提高,在反硝化过程中产生的碱度相应地降低了硝化过程需要的碱耗。(3)缺氧反硝化过程对污染物具有较高的降解效率。如COD、BOD5和SCN-在缺氧段中去除率在67%、38%、59%,酚和有机物的去除率分别为62%和36%,故反硝化反应是最为经济的节能型降解过程。
  • 10

    2020/10

    空压机热能热水机组,是一种利用压缩机高温油气热能,通过热交换将热能充分利用的节能设备。它通过能量交换和节能控制,收集空压机运行过程中产生的热能,同时改善空压机的运行工况,是一种相对高效废热利用、零成本运行的节能设备。1热能来源可以是喷油螺杆式空气压缩机,可以是中央空调的喷油螺杆压缩机,也可以是能源中心或企业其他设备的余热。热水可作为生活用水、热风烘干、暖气供应、恒温恒湿组合风柜、锅炉补充热水、清洗设备用热水等。2原理利用压缩中的高温油气热能,通过热交换热能传递给常温热水,实现热能利用。电动机带动螺杆机旋转,空气经过滤器,被吸入螺杆压缩机中压缩成高压空气,并与循环油混合形成高压高温油气混合气体,进入油气分离器。油气混合气被分离成油气和空气后,其中的压缩空气经后冷却器散热后供给用户;螺杆式空压机长期连续的运行过程中,把电能转换为机械能,机械能转换为热能,在机械能转换为热能过程中,空气得到强烈的高压压缩使之温度骤升,这是普通物理学机械能量转换现象。机械螺杆的高速旋转,同时也摩擦发热,这些产生的高热由空压机润滑油的加入混合成油/气蒸汽排出机体,这部分高温油/气流的热量相当于空压机输入功率的1/4,它的温度通常在80℃(冬季)-100℃(夏秋季),这些热能都由于机器运行温度的要求,被无端地废弃排往大气中,即空压机的散热系统来完成机器运行的温度要求。
  • 18

    2020/09

    随着科学技术的发展,空气压缩机作为一种重要的动力装备,被广泛应用于机械、冶金、建材、电子电力、化工、食品、纺织等众多工业领域。然而,空压机属于高能耗设备,在某些行业耗电占到了生产耗电的30%以上,故俗称“电老虎”。  近年来,永磁变频系列空压机因其节能高效的特点成为行业的热点和亮点,市场上原有的“电老虎”即耗能大的常规空压机,正逐步被永磁变频空压机取代或置换,为用户直接带来20%-40%的成本节约。  然而,市场上充斥着各种良莠不齐的永磁变频空压机,其风险就是由于高温而引起的消磁。大家都知道,永磁电机里要件是磁钢,而磁钢怕的是温度高。永磁变频空压机在长时间高温状态下会逐步退磁,温度越高,退磁的风险越大。在各行业使用永磁空压机由于磁钢退磁引发的永磁空压机功能失效的案例很多。  引发消磁风险的因素有哪些?  1、永磁电机耐高温等级:永磁电机磁性材料采用钕铁硼磁性材料,作为稀土永磁材料发展的新结果,由于其优异的磁性能而被称为“磁王”。成分主要有:稀土金属钕29%-32.5%,金属元素铁63.95-68.65%,非金属元素硼1.1-1.2%等元素。永磁电机性能还有一个重要的指标,即:耐高温等级。超过它的耐温等级,其磁通密度会急剧下降。耐高温等级可分为:N系列,耐80度以上;H系列,耐120度;SH系列,耐150度以上。  2、电机防护等级:防护等级分为IP23和IP54。  IP23由于温度关系所以只能设计成开式电机,空压机很多使用场合比较差,粉尘、潮气、盐雾等腐蚀性气体导致其使用寿命低。尤其是含金属的粉尘进入电机将严重影响磁线分布,造成效率下降。  而高防护等级的IP54电机就避免了以上风险。  3、电机散热性:因为永磁电机材质特殊,通常对于电机怎样保证散热和冷却是关键的一点。现市场上永磁变频空压机主要采用的电机,冷却通常有三种方式:风冷、水冷和油冷。  一、风冷:成本低、散热差,维护成本高、体积大。  二、水冷:散热好,成本高(需要配水箱、水泵或水循环系统),及产生腐蚀铁锈、并对密封性要求高。  三、油冷:体积小、散热好,成本低,可以利用空压机润滑油的循环系统。  由此可看出,永磁电机采用油冷型结构能有效保证电机散热性。  为了给用户创造更多利益,上海朗气压缩机械有限公司用三年多的时间,经过全新设计开发、测试、比对、再测试等一系列过程,隆重推出行业**的新一代油冷型永磁变频系列空压机。  永磁变频系列空压机四大优势  1、永磁电机采用N38SH级永磁体,电机耐高温150度以上仍可稳定使用,从材料上保证了电机不退磁。同时采用行业**的油冷设计,电机的散热和冷却都要比风冷和水冷设计好。油冷设计有利于电机的散热和冷却,进一步保证了电机不退磁。  2、永磁电机采用IP54全封闭油冷结构。采用钕铁硼磁性材料具有优异的磁性能的专用电机,无轴承免维护设计,免定期注油脂、免定期更换轴承、直接联接无传动损耗,消除尘埃杂质侵扰。电机能效达到国家一级能效水平。独特的电机油冷却系统设计,利用压缩机油全部经过电机内部,全频率范围内都能保证电机低温升的运行。  3、机体采用一体变频传动联接设计,主机和电机采用行业**的“莫氏”锥度联接设计,安装和拆卸更加便捷,无需调整,避免了传动过程的能耗损失。
  • 18

    2020/09

    螺杆空压机属于机械类产品,在使用过程中也需要维护保养。以下跟大家介绍下如何维护保养我们购买的螺杆空压机。  1.每日检查油位、排气温度和排气压力,检查有无异常声音;  2.每周开机前打开分离器排污阀排放冷凝水,检查各处有无泄漏,检查安全阀,检查皮带磨损情况(目测);  3.定期检查进气控制阀、压力阀、电控箱连接线端子、安全阀、冷却风扇;  4.定期清洗、清扫冷却器,试验安全阀可靠性;  5.定期更换机油过滤器芯、油分离器滤芯、进气过滤器滤芯和润滑油。  以下重点跟大家介绍下滤芯和油分芯的保养和更换细则。  进气空滤芯的保养  空气滤清器是滤除空气尘埃污物的部件,过滤后的干净空气进入螺杆转子压缩腔压缩。因螺杆机内部间隙只允许15u以内的颗粒滤出。如果空滤芯堵塞破损,大量大于15u的颗粒物进入螺杆机内循环,不仅大大缩短机油滤芯、油细分离芯的使用寿命,还会导致大量颗粒物直接进入轴承腔,加速轴承磨损使转子间隙增大,压缩效率降低,甚至转子枯燥咬死。  机油过滤器的更换  新机第一次运行500小时后应更换机油芯,用专用扳手反旋油滤芯取下,新滤芯装上前记得加上加螺杆机油,滤芯密封用双手拧回油滤座,用力拧紧。 建议每1500-2000小时更换新滤芯,换机油时同时更换油滤芯,在环境恶劣时使用应缩短更换周期。 严禁超期限使用机油滤芯,否则由于滤芯堵塞严重,压差超过旁通阀承受界限,旁通阀自动打开,大量赃物、颗粒会直接随机油进入螺杆主机内,造成严重后果。 柴动螺杆机柴油机机油过滤芯及柴油过滤芯的更换应遵循柴油机保养要求进行,更换方式与螺杆机油芯类似。  油气分离器的维护更换  油气分离器是将螺杆润滑油与压缩空气分离的部件,正常运行下,油气分离器的使用寿命在3000小时左右,但润滑油的品质及空气的过滤精度对其寿命有巨大的影响。可见在恶劣使用环境下必须缩短空滤芯的保养更换周期,甚至考虑加装前置空气滤清器。 油气分离器在到期或者前后压力差超过0.12Mpa后必须予以更换。否则会造成电机过载,油气分离器破损跑油。 更换方法: 拆下油气桶盖上安装的各控制管接头。取
  • 15

    2020/09

    现在每个工厂所购买的螺杆空压机都需配有冷冻式干燥机,但冷冻式干燥机不像空压机一样,有明确的标明保养所需更换的内容。所以有的客户的冷干机从买到用。
  • 15

    2020/09

    我公司为某某气站配套的7.5kw的空压机每天只用2小时,用一段时间后老是出现机油乳化的情况,一直找不到解决的方法,主要是因为机器的工作时间太短,温度上不来,导致机油乳化的情况。后面经过多次的调试,我们工作人员在机器的内部加装了温控阀,才把最终的问题解决好。